UNIVERSIDAD ESTATAL DE MILAGRO
FACULTAD CIENCIAS DE LA INGENIERIA

TRABAJO DE TITULACIÓN DE GRADO PREVIO A LA
OBTENCIÓN DEL TÍTULO DE INGENIERO EN SISTEMAS
COMPUTACIONALES

PROPUESTA PRÁCTICA DEL EXAMEN COMPLEXIVO

TEMA: ESTUDIO DE LA METODOLOGIA RUP EN LOS SISTEMAS
ACADEMICOS: UNEMI

Autores:
REYES CAMPUZANO OSCAR ALFREDO
SALAZAR ORDOÑEZ HEYDI KATHERINE

Acompañante:
ING. VERA PAREDES DANIEL ALEXANDER. MSC

Milagro, septiembre 2017
ECUADOR
DERECHOS DE AUTOR

Ingeniero.
Fabricio Guevara Viejó, PhD.
RECTOR
Universidad Estatal de Milagro
Presente.

Nosotros, Reyes Campuzano Oscar Alfredo y Salazar Ordoñez Heydi Katherine en calidad de autores y titulares de los derechos morales y patrimoniales de la propuesta práctica de la alternativa de Titulación - Examen Complexivo, modalidad presencial, mediante el presente documento, libre y voluntariamente procedo a hacer entrega de la Cesión de Derecho del Autor de la propuesta practica realizado como requisito previo para la obtención de nuestro Título de Grado, como aporte a la Temática “Análisis de la Metodología RUP en los procesos descriptivos de sistemas académicos” del Grupo de Investigación Gestión en Tics y Redes de conformidad con el Art. 114 del Código Orgánico de la Economía Social de los Conocimientos, Creatividad e Innovación, concedemos a favor de la Universidad Estatal de Milagro una licencia gratuita, intransferible y no exclusiva para el uso no comercial de la obra, con fines estrictamente académicos. Conservamos a nuestro favor todos los derechos de autor sobre la obra, establecidos en la normativa citada.

Así mismo, autorizamos a la Universidad Estatal de Milagro para que realice la digitalización y publicación de esta propuesta practica en el repositorio virtual, de conformidad a lo dispuesto en el Art. 144 de la Ley Orgánica de Educación Superior.

Los autores declaran que la obra objeto de la presente autorización es original en su forma de expresión y no infringe el derecho de autor de terceros, asumiendo la responsabilidad por cualquier reclamación que pudiera presentarse por esta causa y liberando a la Universidad de toda responsabilidad.

Milagro, a los 21 días del mes de septiembre del 2017

Oscar Reyes
Firma del Estudiante (a)
Oscar Alfredo Reyes Campuzano
CI: 0941334898

Heydi Salazar
Firma del Estudiante (a)
Heydi Katherine Salazar Ordoñez
CI: 0929096824
APROBACIÓN DEL ACOMPAÑANTE DE LA PROPUESTA PRÁCTICA

Yo, ING. VERA PAREDES DANIEL ALEXANDER en mi calidad de acompañante de la propuesta práctica del Examen Complexivo, modalidad presencial, elaborado por los estudiantes REYES CAMPÚZANO OSCAR ALFREDO Y SALAZAR ORDOÑEZ HEYDI KATHERINE; cuyo tema es: ESTUDIO DE LA METODOLOGÍA RUP EN LOS SISTEMAS ACADÉMICOS: UNEMI, que aporta a la Línea de Investigación CICLO DE VIDA DE UN PROYECTO DE SOFTWARE, METODOLOGÍAS Y PLATAFORMAS previo a la obtención del Grado de INGENIEROS EN SISTEMAS COMPUTACIONALES; considero que el mismo reúne los requisitos y méritos necesarios en el campo metodológico y epistemológico, para ser sometido a la evaluación por parte del tribunal calificador que se designe, por lo que lo APRUEBO, a fin de que el trabajo sea habilitado para continuar con el proceso de titulación de la alternativa de Examen Complexivo de la Universidad Estatal de Milagro.

En la ciudad de Milagro, a los 21 días del mes de septiembre de 2017.

[Signature]

ING. VERA PAREDES DANIEL ALEXANDER MSC
ACOMPAÑANTE
CC. 0914192182
APROBACIÓN DEL TRIBUNAL CALIFICADOR

El tribunal calificador constituido por:

Ing. Vera Paredes Daniel Alexander
Ing. Lazo Sulca Rafael Seleyman
Ing. Vinueza Martínez Jorge Luis

Luego de realizar la revisión de la propuesta práctica del Examen Complexivo, previo a la obtención del título (o grado académico) de Ingeniero en Sistemas Computacionales presentado por la señora Salazar Ordoñez Heydi Katherine.

Con el título:

Estudio de la Metodología RUP en los Sistemas Académicos: UNEMI

Otorga al presente la propuesta práctica del Examen Complexivo, las siguientes calificaciones:

MEMORIA CIENTÍFICA [95]
DEFENSA ORAL [41]
TOTAL [99]
EQUIVALENTE [49,6]

Emite el siguiente veredicto: (aprobado/reprobado) APROBADO

Para constancia de lo actuado firman:

<table>
<thead>
<tr>
<th>Nombres y Apellidos</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presidente</td>
<td>DANIEL VERA PAREDES</td>
</tr>
<tr>
<td>Vocal 1</td>
<td>JORGE VINUEZA MARTÍNEZ</td>
</tr>
<tr>
<td>Vocal 2</td>
<td>RAFAEL LAZO SULCA</td>
</tr>
</tbody>
</table>
APROBACIÓN DEL TRIBUNAL CALIFICADOR

El tribunal calificador constituido por:

Ing. Vera Paredes Daniel Alexander
Ing. Lazo Sulca Rafael Selyman
Ing. Vinueza Martínez Jorge Luis

Luego de realizar la revisión de la propuesta práctica del Examen Complejivo, previo a la obtención del título (o grado académico) de Ingeniero en Sistemas Computacionales presentado por el señor Reyes Campuzano Oscar Alfredo.

Con el título:

Estudio de la Metodología RUP en los Sistemas Académicos: UNEMI

Otorga al presente la propuesta práctica del Examen Complejivo, las siguientes calificaciones:

MEMORIA CIENTÍFICA [47]
DEFENSA ORAL [41]
TOTAL [94]
EQUIVALENTE [96]

Emite el siguiente veredicto: (aprobado/reprobado) APROBADO

Para constancia de lo actuado firman:

Nombres y Apellidos Firma
Presidente Daniel Vera Paredes
Vocal 1 Jorge Vinueza Martínez
Vocal 2 Rafael Lazo Sulca
DEDICATORIA

A Dios por ser el quien me ha regalado la sabiduría para poder terminar este proyecto y mi carrera con éxito.

A mi madre Sra. Flora Campuzano Bazán y a mi tía Sra. Catalina Campuzano Bazán, quienes con esfuerzo y dedicación me han sabido acompañar y dar el apoyo incondicional en todo momento y todos los aspectos de mi vida.

A mi hija Allison Reyes quien es mi fuente de inspiración y motivo de superación en todo lo que me proponga realizar.

A mis hermanos Bairon, Joel y Anthony quienes me brindan la confianza de seguir adelante.

A mí querida esposa por su motivación y su apoyo incondicional.

Oscar Alfredo Reyes Campuzano
DEDICATORIA

Dedico este trabajo principalmente a Dios quien supo guiarme por el buen camino, por darme esa fuerza para seguir adelante y no desmayar en los problemas que se presentaban, por permitirme el haber llegado hasta este momento tan importante de mi formación profesional. A mi padre, por ser mi pilar fundamental, por apoyarme siempre en todo lo que eh querido, a pesar de que lo decepcione el nunca dejo de creer en mí, gracias papa espero que algún día te sientas orgulloso de mi.

A mi madre que ha sabido formarme con buenos sentimientos, hábitos y valores, por demostrarme siempre su cariño y apoyo incondicional sin importar las veces que le eh fallado, por ser esa amiga y cómplice a lo largo de mi vida.

A mis hermanos por compartir alegrías y tropezos de cuales salimos triunfadores, por su confianza y por permitirme estar en sus vidas los amo.

A mi hija, quizás en estos momentos no entienda mis palabras, pero para cuando sea capaz, quiero se dé cuenta de lo que significa para mí. Llegaste justo en el momento indicado tu sonrisa y tu cariño son los detonantes de mi felicidad, de mi esfuerzo, de mis ganas de buscar lo mejor para ti. Fuiste mi motivación más grande para poder concluir con éxito este proyecto.

Heydi Katherine Salazar Ordoñez
AGRADECIMIENTO

Le agradezco a los directivos de esta Importante Institución Educativa como es la Universidad Estatal de Milagro (UNEMI), por la confianza y el apoyo para la culminación de esta etapa importante de mi vida.

A mi madre y tía que me inculcaron valores de responsabilidad y dedicación hacia la superación, el bien común y el esfuerzo continuo para cumplir toda meta que me proponga.

Muchas gracias.

Oscar Alfredo Reyes Campuzano
AGRADECIMIENTO

Le agradezco a Dios por haberme acompañado y guiado a lo largo de mi carrera, por ser mi guía y fortaleza en los momentos de debilidad y por brindarme una vida llena de aprendizajes, experiencias y sobre todo felicidad.

Le doy gracias a mis padres Cesar y Liliana por apoyarme en todo momento, por haberme dado la oportunidad de tener una excelente educación en el transcurso de mi vida. Sobre todo, por ser un excelente ejemplo de vida a seguir.

A mis hermanos Anderson y Alejandra por ser parte importante de mi vida y representar la unidad familiar. A mi hija Arlet que fue mi gran motivación para concluir con éxito mi carrera profesional. A mi esposo Andrés por saber comprender y apoyarme a lo largo de este proyecto, a mis tíos, tías, primos y demás familiares que de uno u otra manera han estado hay conmigo motivándome a terminar mi carrera profesional.

A la UNIVERSIDAD ESTATAL DE MILAGRO que nos abrió sus puertas para ser mejores personas y buenos profesionales. A nuestro acompañante y guía Ing. Vera Paredes Daniel por su apoyo y confianza. A mi compañero de ensayo Sr. Oscar Reyes por su aporte y dedicación a lo largo de este trabajo.

También quiero dar las gracias a ti mi gorda Alejandra Paredes por aguantarme, por soportar mis ratos de histeria, por ser una parte muy importante de mi vida por el apoyo recibido desde el día que la conocí por ser más que una amiga. Por todo el apoyo recibido para la realización de este trabajo, por permitirme entrar en tu vida, por presentarme a tu hermosa familia que desde el día que los conocí me aceptaron como uno más de ustedes. Por todos los consejos y el apoyo recibido en los momentos difíciles de la vida.

Son muchas las personas que han formado parte de mi vida profesional a las que me encantaría agradecerles su amistad, consejos, apoyo, ánimo y compañía en los momentos más difíciles de mi vida. Algunas están aquí conmigo y otras en mis recuerdos y en mi corazón, sin importar en donde estén quiero darles las gracias por formar parte de mi, por todo lo que me han brindado y por todas sus bendiciones.

Para ellos: Muchas gracias y que Dios los bendiga.

Heydi Katherine Salazar Ordoñez
ÍNDICE GENERAL

DERECHOS DE AUTOR .. 2
APROBACIÓN DEL ACOMPAÑANTE DE LA PROPUESTA PRÁCTICA 3
APROBACIÓN DEL TRIBUNAL CALIFICADOR ... 4
DEDICATORIA .. 6
DEDICATORIA .. 7
AGRADECIMIENTO ... 8
AGRADECIMIENTO ... 9
ÍNDICE GENERAL ... 10
ÍNDICE DE FIGURAS ... 11
RESUMEN .. 12
ABSTRACT .. 13
INTRODUCCION ... 14
MARCO TEORICO .. 16
DESARROLLO ... 23
CONCLUSION .. 26
BIBLIOGRAFIA ... 28
ÍNDICE DE FIGURAS

Ilustración 1 HERRAMIENTAS ... 19
Ilustración 2 CICLO ... 21
TEMA:

"Análisis de la metodología Rational Unified Process (RUP) en los procesos descriptivos de sistemas académicos"

RESUMEN

El presente trabajo de revisión de lectura aborda la temática de: Análisis de la metodología RUP en los procesos descriptivos de sistemas académicos, en donde los diferentes autores, analizados en el presente documento, abordan el tema desde el punto de vista de la variable: Estudio de la metodología Rational Unified Process (RUP) o Proceso Racional Unificado en los sistemas académicos UNEMI, que se basan en reconocer las metodologías RUP en los sistemas académicos de la UNEMI y así poder realizar la orientación y ejecución de proyectos académicos de desarrollo de software. Para los procesos descriptivos académicos, se han realizado una personalización de la metodología RUP incluyendo las buenas prácticas de Capability Maturity Model Integration (CMMI) o Integración de modelos de madurez de capacidades.

Dado que esto se considera como un transformador de información es decir estas metodologías están diseñadas para administrar, modificar y transmitir los datos desde los más complejos como presentaciones multimedia hasta los más simples como un solo bit, utilizado como un instrumento base para controlar todo el hardware y permitir que el usuario tenga acceso a información, a su vez tengan el control de otros sistemas que se encuentren integrados en el mismo, por ende se da el surgimiento de los avances informáticos.

Los softwares que participan incansablemente en su evolución, forman un papel muy destacado en la actualidad para la civilización de la nueva era tecnológica. La evolución del sistema para el estudio de ingeniería del software se ha convertido en un gran pilar fundamental, y como parte esencial de un sistema es que debe soportar diversas modificaciones a lo largo de las pruebas de implementación, sino se convertiría en un sistema no útil para el usuario, por tal razón este debe tener la facilidad de adecuarse a cualquier lugar de implementación de acuerdo al contexto con el que fue creado para brindar la mejor asistencia a la persona que lo controle.

PALABRAS CLAVE:
Metodología, Software, Proceso, RUP
TITLE:
“Analysis of the Rational Unified Process (RUP) methodology in the descriptive processes of academic systems”

ABSTRACT

KEYWORDS:
The present work of reading review addresses the theme of: Analysis of the RUP methodology in the descriptive processes of academic systems, where the different authors, analyzed in this document, approach the subject from the point of view of the variable: Study of the Rational Unified Process (RUP) methodology in UNEMI academic systems, which are based on the recognition of RUP methodologies in the academic systems of UNEMI, in order to guide and execute academic software development projects. For the academic descriptive processes, the RUP methodology has been customized including the good practices of Capability Maturity Model Integration (CMMI) or Integration of capacity maturity models.

Since this is considered as an information transformer ie these methodologies are designed to manage, modify and transmit data from the most complex as multimedia presentations to the simplest as a single bit, used as a base instrument to control all the hardware and allow the user to have access to information, in turn have control of other systems that are integrated into it, hence the emergence of computer advances.

The softwares that participate tirelessly in its evolution, play a very prominent role at present for the civilization of the new technological era.
The evolution of the system for the study of software engineering has become a fundamental pillar, and as an essential part of a system is that it must withstand various modifications throughout the implementation tests, but would become a non-useful system for the user, for this reason it must have the facility to adapt to any place of implementation according to the context with which it was created to provide the best assistance to the person who controls it.

KEYWORDS:
Methodology, Software, Process, RUP
La temática Análisis de la metodología RUP en los procesos descriptivos de los sistemas académicos, analizados desde el punto de vista de las ciencias de la investigación, nos indica que está basada en un conjunto de actividades desde la Ingeniería de software que transforma requisitos de usuario como los derivados de ambientes de aprendizaje y la caracterización del currículo para el desarrollo de competencias en educadores en un sistema de software, junto el lenguaje unificado de modela de UML (Unified Modeling Language) que es el constituye una metodología estándar utilizada para el análisis, implementación de sistemas orientados a objetos. Su virtud principal de alta calidad esta apropiado a las necesidades del usuario final.

RUP no es una metodología perfecta, puesto que ninguna lo es, se puede adaptar bastante a la manera de organizar el trabajo, es decir no es válido para cualquier tipo de proyecto, y es una mentalidad que hay que establecer desde el primer momento. Por consiguiente es una metodología que admite una determinada cantidad de variaciones en los casos de uso, no resulta tan flexible como otras metodologías de las "llamadas" agiles, como la combinación de SCRUM que es el desarrollo guiado por test, por contra, RUP ofrece una serie de mecanismos que simplifican enormemente la comunicación entre distintos miembros del equipo gracias a la utilización de diagramas UML como su herramienta principal de expresión. A diferencia de otras metodologías RUP es su escalabilidad la literatura existente entorno a, por ejemplo, la metodología SCRUM especifica que el número ideal de miembros de un equipo oscila entre los 5 y 9, y si en algún momento ese número es superado, es recomendable crear una división en los distintos grupos. RUP, admite cualquier número de integrantes en los distintos equipos, siempre que este número este adecuado a las necesidades del proyecto, se hizo especial hincapié en que las metodologías son una parte fundamental del desarrollo de proyectos, más allá de las destrezas y conocimientos técnicos de cada uno de los integrantes de los equipos. Una buena organización es fundamental, sobre todo a la hora de abordar proyectos de un tamaño medio o grande. Entre RUP y otras metodologías es la composición de los equipos, siendo en metodologías agiles equipos multidisciplinarenres, en contra de los equipos de RUP en los que es bastante menos frecuente asignar varios roles a una misma persona. Si bien este punto puede parecer desfavorable para RUP, dado que le resta flexibilidad a la hora de afrontar determinados problemas, es necesario recordar que los
perfiles multidisciplinares son, normalmente, más costosos y poco frecuentes, pero a su vez son muy necesarias. (Mart, Fin, Fern, & Junio, 2015)

El contexto del presente proyecto está enmarcado por metodologías tradicionales y metodologías ágiles para el desarrollo de software, ampliamente utilizadas y probadas por organizaciones que conforman la industria mundial. Por tanto, buena parte de este proyecto está sustentado en revisiones bibliográficas de diversas fuentes, y principalmente en la adaptación de la metodología RUP.
MARCO TEORICO

Se propone una metodología para la ejecución de proyectos académicos de desarrollo de software; y está dirigido a los programas de pregrado y posgrado de la Universidad Estatal de Milagro. En esta metodología se establecen procesos que implementan adaptaciones de (RUP) o Proceso Racional Unificado permitiendo hacer frente a proyectos académicos de diferente magnitud.

Rational Unified Process (RUP) es una metodología para desarrollo de software creado por Rational Software, IBM, SofTeam, Unisys, Nihon Unisys, Alcatel y Q-Labs. La RUP se puede encontrar en la forma de un software, proporcionado por Rational Software, y como un conjunto de procesos.

RUP divide el proceso en cuatro fases, dentro de las cuales se realizan varias iteraciones en número variable según el proyecto y en las que se hace un mayor o menor hincapié en los distintas actividades.

RUP es un software que a su vez se inmersa con el marco del proceso de ingeniería, este se apoya en el desarrollo de grandes sistemas compuestos por software, hardware, trabajadores e información. RUP incluye un modelo de arquitectura dentro de un marco que permite la consideración de un conjunto de diferentes perspectivas sea lógico, físico, información, etc., con el fin de ofrecer una solución que aborda las preocupaciones de los diversos actores del desarrollo. Un distintivo de RUP es que los requisitos para estos diferentes tipos de componentes se deriven conjuntamente con el aumento de la especificidad de los requisitos generales del sistema.

RUP se dirige a diversos proyectos que puedan ser lo suficientemente grandes como para requerir múltiples equipos con desarrollo simultáneo de hardware y software, a su vez tiene problemas de implementación de importancia arquitectónica, RUP incluye un rediseño de la tecnología de la información subyacente acerca de la infraestructura para apoyar los procesos académicos en evolución.

En este proyecto nos referiremos a RUP como un conjunto de recursos que proporcionan servicios que son utilizados por una empresa o entidad que llevan a cabo un propósito comercial o una misión.
Los sistemas son especificados por los servicios que proporcionan, junto con otros servicios no requisitos tales como la fiabilidad o el coste de propiedad que consiste en especificar los componentes, sus atributos y relaciones. (Cantor, 2003)

En este trabajo sólo cubriremos aspectos relacionados conjunto de procesos que se refieren a la RUP, incluyendo:

- Conceptos.
- Mejores prácticas (mejores prácticas).
- Fases de desarrollo.

Como se mencionó anteriormente, el RUP es más que un software para ayudar en el desarrollo de sistemas, con una estructura formal y bien definida. Como cualquier metodología, es compuesta de conceptos, prácticas y reglas. Uno de los principales pilares del RUP es el concepto de las mejores prácticas (mejores prácticas), que son normas / prácticas para reducir el riesgo (existente en cualquier proyecto de software) y hacer que el desarrollo sea más eficiente. El RUP define seis mejores prácticas, siendo ellas:

- Desarrollar iterativamente.
- Gestionar requerimientos.
- Utilizar arquitecturas basadas en componentes.
- Modelar visualmente.
- Verificación continua de calidad.
- Control de cambios.

RUP, entre otras cosas, entrelaza el concepto de las mejores prácticas en cuatro definiciones, siendo ellas:

- Funciones: grupos de actividades ejecutadas.
- Disciplinas: áreas de esfuerzo en la ingeniería de software.
- Actividades: definiciones de cómo (objetos / artefactos) se construye y evaluado.
- Objetos / artefactos: resultado del trabajo, producido o modificado durante el proceso.
Además de estas definiciones, esta metodología de desarrollo divide el proceso de desarrollo de software en cuatro fases (las cuales se discutirán con más detalle posteriormente). Son ellas:

- **Diseño**: definición del alcance del proyecto.
- **Elaboración**: elaboración básica del software.
- **Construcción**: desarrollo.
- **Transición**.

(Universit, 2003)

RUP es una metodología sólida, con documentación, que apoya el ciclo de vida evolutivo incremental, además de orientarse al desarrollo de componentes apoyando el desarrollo orientado a objetos. Según Kruchten, (2013) RUP es un proceso de ingeniería de software que provee un enfoque disciplinado para la asignación de tareas en una entidad la cual desarrolla software. Lo primordial en una organización es garantizar la elaboración del software de buena índole que complazcan las necesidades de las personas y estén a buen recaudo y a un tiempo preferible. A pesar que RUP no es una metodología para el desarrollo de AV, RUP permite ser utilizada para tal fin luego es un marco de trabajo personalizable, el cual puede fácilmente adaptarse a la manera en que trabaja una compañía. Por lo tanto, RUP puede ser adaptada tanto a empresas grandes como pequeñas y puede ser modificada para adecuarse a las diferentes situaciones. Esta investigación se estructura de la siguiente manera: en primer lugar se estudian los requerimientos y los diferentes tipos de evaluación de los sistemas de gestión de la enseñanza. Se describe la propuesta de adaptación y se plantea el estudio de caso del Instituto de Estudios Superiores en Administración (IESA), y los resultados obtenidos utilizando la metodología RUP modificada y, finalmente se establecen las conclusiones y próximas acciones.
Se pueden encontrar ejemplos concretos de adaptaciones de RUP como base para el desarrollo de aplicaciones, como el caso de modelado de aplicaciones de Internet; y adaptado para integrar la interacción humano-computadora y la ingeniería de software. (Bygstad, et. al., 2003) han utilizado RUP para probar cuatro patrones de integración de sistemas de información, puesto que RUP maneja la integración técnica y la de los stakeholders externos. Los patrones representan tipos ideales de cómo y cuándo, el desarrollo de un proyecto debería incluir y adaptar la tecnología y los stakeholders, y estabilizar el comportamiento de la red. Uno de los patrones lo ilustran con el estudio de la integración de un Learning Management System (LMS) o Sistema de Gestión de Aprendizaje en una Institución Universitaria realizado durante el período de 2001-2003, encontrando que al integrar el LMS con la organización en las etapas finales de desarrollo, produce el riesgo de resistencia de los usuarios y demoras en la implementación organizacional.

En vista de la necesidad de una metodología que incorpore la selección, implementación e integración de un LMS a una institución académica o empresa para poder desarrollar un AV, se propone el uso de RUP adaptado para lograr tal fin. Como indica Fernández, la selección de un LMS es una decisión trascendental que hay que acometer como primera actividad en la gestión tecnológica del proyecto de implantación de la formación en línea.
Por lo tanto, se insertan las actividades de análisis y selección del LMS en la disciplina de análisis y diseño en los workflow realizar una síntesis arquitectónica y definir una arquitectura candidata, por consiguiente este elemento tecnológico (LMS) va a restringir la arquitectura definitiva del AV. (Eduardo, Morales, & Díaz-antón, s. f)

RUP es un proceso que tiene como meta clasificar y disponer el desarrollo de software, en la cual se tienen un conjunto de actividades necesarias para transformar los requisitos del usuario en un sistema Software (Amo, Martínez y Segovia, 2005). Inicialmente fue llamada UP (Unified Process) y luego cambió su nombre a RUP por el respaldo de Rational Software. (Sommerville, 2005).

El RUP se enfoca en modelos de cascada y se va componiendo en capas puesto que presenta diferentes características que van dirigidas en los casos de uso enfocados en arquitectura que interactúan e incrementan entre sí, lo cual es primordial para el proceso de desarrollo del software.

Las características de RUP son:

a) Casos de Uso: Describe un servicio que el usuario requiere del sistema, incluye la secuencia completa de interacciones entre el usuario y el sistema.

b) Centrado en la arquitectura: Comprende las diferentes vistas del sistema en desarrollo, que corresponden a los modelos del sistema: Modelos de casos de uso, de análisis, de diseño, de despliegue e implementación. La arquitectura del software es importante para comprender el sistema como un todo y a la vez en sus distintas partes (Abrahamsson, Salo, Ronkainen y Warsta, 2002), sirve para organizar el desarrollo, fomentar la reutilización de componentes y hacer evolucionar el sistema, es decir, agregarle más funcionalidad (Pressman y Murrieta, 2006)
Se aprecia la forma en que los modelos de la arquitectura se completan en cada ciclo, ejemplo: se ve en la “línea base de la arquitectura” que la barra que denota el modelo de despliegue está clara e incompleta, evidenciándose una implementación parcial del sistema, lo cual mostraría solo algunas funciones y propiedades del software en construcción. A esta parcialidad en la implementación se le conoce como arquitectura ejecutable.

En la misma gráfica que se encuentra arriba se ve la misma barra, pero un poco más oscura, lo cual muestra que el modelo se ha estado mejorando progresivamente, mostrando que durante la construcción los diferentes modelos se van desarrollando hasta completarse.

El proceso del RUP se ejecuta en tres perspectivas:

La perspectiva dinámica, la cual contiene las fases del modelo sobre el tiempo; la estática que muestra las actividades del proceso y la práctica, que muestra las buenas prácticas durante el proceso del RUP (IBM, s. f.)

La estructura de RUP y la forma en que se relacionan sus tres perspectivas. En ésta se aprecia la forma en que las disciplinas se aplican a cada una de las fases hasta lograr su completitud, y a su vez, cómo cada fase se completa de forma iterativa para así avanzar a
la fase siguiente. De igual forma se aprecia que la perspectiva de buenas prácticas está en un eje “z” que es transversal a las perspectivas dinámica “x” y estática “y”, funcionando de manera permanente en el proceso de desarrollo de software.

De igual forma se aprecia la misma barra en la “línea base al final de la construcción” en la cual se ve la barra del modelo de despliegue completa y con un color más oscuro, esto obedece a los refinamientos sucesivos que hace la metodología RUP a la arquitectura ejecutable, proporcionando de esta manera un prototipo evolutivo y funcional. De la misma manera la arquitectura como tal no cambia drásticamente pues gran parte de la arquitectura se definió durante la fase de elaboración, pero puede agregar modelos así como lo muestra la gráfica con la adición del modelo de pruebas a la misma arquitectura. (Pérez, 2011)
DESARROLLO

Las metodologías de desarrollo son una gran ayuda para poder generar software con gran calidad y confiabilidad dirigido al estudio de la metodología RUP en los sistemas académicos UNEMI dado que el usuario garantiza que cumple a cabalidad todas sus expectativas, el sistema acepta modificaciones y tiene soporte adecuado, esto garantiza que se lo puede implementar en cualquier ámbito dentro del contexto en el que se lo formó.

RUP, es comúnmente conocido como el diagrama "joroba" por ende cada disciplina da una estimación aproximada del esfuerzo relativo para cada uno a lo largo de las cuatro fases, por ejemplo, puede ver que una gran parte de Business Modeling tiene lugar en incepción, aunque continúa hasta la transición temprana. A su vez estos trabajan en el despliegue, normalmente no comienza hasta su elaboración y realmente no entra en el centro de la construcción. RUP es un mecanismo visual que proporciona una visión general aproximada de cuánto se ejecuta cada disciplina en cada fase.

Fundamentalmente, RUP se ha convertido en un estándar industrial de facto para software prescriptivo procesos. RUP ha funcionado, y está aquí para quedarse, el (RMC) contiene más información de la que necesita para definir su propio proceso de software.

Este se basa en las mejores prácticas obtenidas de muchos años de experiencia en muchos proyectos. Eso ha sido aplicado con éxito por muchas organizaciones en muchos dominios. Un número creciente de los profesionales son proficientes con el RUP, por lo que es más fácil encontrar personas con experiencia RUP. Eso no tiene sentido desarrollar su propio proceso cuando tal riqueza de material probado ya existe. (Ambler, 2005)

RUP es un proceso: dirigido por casos de uso, centrado en la arquitectura, iterativo e incremental que puede descomponerse en fases. Una fase es el intervalo de tiempo entre dos hitos importantes del proceso, cuando se cumplen un conjunto de objetivos bien definidos, se completan los artefactos y se toman las decisiones sobre si pasar o no a la siguiente fase.

Hay cuatro fases en el ciclo de Vida del desarrollo de software:

Iniciación, elaboración, construcción y transición. Así mismo, se definen, atendiendo al tipo de actividades que se realiza, diferentes flujos de trabajo: Modelado del negocio,
Requisitos, Análisis, Diseño, implementación y Prueba. Cada fase termina con un hito, que se determina por la disponibilidad de un conjunto de artefactos. El artefacto más interesante es el modelo.

1. **En la fase de iniciación** se realiza la especificación de requisitos funcionales y no funcionales y de pseudorrequisitos, a partir del análisis de escenarios y la construcción de casos de uso, luego se identifican los objetos participantes y se agrupan para conformar las clases. Con la información preliminar sobre clases y casos de uso se construye el modelo de análisis en el que se representa la abstracción del dominio de la aplicación. Este modelo facilita la comunicación de las ideas fundamentales y orienta el desarrollo del proyecto.

2. **En la fase de elaboración** se definen objetivos de diseño, se diseñan las clases y subsistemas del dominio de la solución, se elaboran artefactos como diagramas de interacción de estado y de actividad que representan las diferentes vistas del sistema, se diseña la interfaz de usuario, se define los objetos de control y de frontera.

3. **En la fase de construcción** se implementan las clases que se diseñaron en las fases anteriores. Se realizan pruebas de funcionalidad y se corrige y mejora el sistema hasta estar seguros de que satisfaga el conjunto de requisitos establecidos.

4. **La fase de transición** se asegura que el software esté disponible para los usuarios finales, se ajustan los errores y defectos encontrados en las pruebas de aceptación y se capacita a los usuarios para proveer el soporte técnico necesario.

Un modelo es una abstracción del sistema, especificando el mismo desde un punto de vista y en un determinado nivel de abstracción.

Los principales modelos son:

- **Modelo de casos de uso:** Casos de uso y su relación con los usuarios.
- **Modelo de análisis:** Refinar casos e incluir un conjunto de objetos que proporcionan el comportamiento (Diagramas de clase del análisis, diagramas de colaboración).
- **Modelo de diseño:** Estructura estática del sistema en la forma de subsistemas, clases e interfaces y casos de uso reflejados como colaboraciones entre ellas.
- **Modelo de implementación:** Incluye componentes (código fuente, ejecutables, entre otros) y correspondencia de las clases con los componentes.
Modelo de despliegue: Muestra las nodos físicos (computadoras) y correspondencia de las componentes con esos nodos, modelo de casos de prueba: Casos de prueba que verifican las casos de uso (Lodos, Genoveva, Gómez-monte, & Olimpia, 2007)

También existen el Modelo del dominio y el Modelo del negocio que describen el contexto del negocio en que se halla el sistema.
CONCLUSION

RUP es un proceso de la metodología de software, esta metodología va de la mano de UML u juntas se convierten en la metodología estándar para el análisis, el diseño, la implementación y la documentación de un proceso de software confiable, la perspectiva dinámica, la cual contiene las fases del modelo sobre el tiempo; la estática que muestra las actividades del proceso y la práctica, que muestra las buenas prácticas durante el proceso del RUP. La estructura de RUP y la forma en que se relacionan sus tres perspectivas, se aprecia la forma en que las disciplinas se aplican a cada una de las fases hasta lograr su completitud, y a su vez, cómo cada fase se completa de forma iterativa para así avanzar a la fase siguiente. De igual forma se aprecia que la perspectiva de buenas prácticas está en un eje que es transversal a las perspectivas dinámica estática, funcionando de manera permanente en el proceso de desarrollo de software.

RUP no es un sistema con pasos restringidos o definidos que sigue al pie de la letra, es más que todo un guía, un conjunto de metodologías adaptables al contexto es decir al software en específico que se está adaptando y desarrollando en el momento, esto no ayuda para guiarnos para el desarrollo determinado de alguna empresa identidad, etc.

 Debemos aprovechar todas herramientas que nos brinda RUP para desarrollar nuestro software de la mejor manera posible, básicamente RUP se compone de 2 fases que son el proceso y en este hay 6 diferentes etapas:

1. Modelado de negocio: Es lo que queremos que logre nuestro sistema de información o software.

2. Requisitos: Son las características puntuales que debe tener nuestro software.

3. Análisis y Diseño: Este nos hace ver lo necesario para lograr producir nuestro software.

4. Implementación: Aquí se construirá nuestro software con código fuentes o diferentes lenguajes de programación y así poder ver las características que debe tener.

5. Prueba: Esto es importante para lograr y asegurar el cumplimiento de los requisitos de nuestro software.

6. Despliegue: Esto se refiere a la instalación o ubicación de nuestro software en el lugar o entidad que va hacer uso y provecho de él.
La segunda fase que vimos fue el soporte y este incluye todo lo que es mantenimiento que abarcar la gestión de cambios y soporte debido a que todo software debe evolucionar y por ende cambiar no debe quedar estático en lo que se produjo en ese momento, la gestión del proyecto gestiona nuestro proyecto a los posibles cambios o tareas que se deben realizar a futuro, y por último está el entorno puesto que un software interactúa con cambios posibles del entorno.

RUP es una guía compuesta por varias fases proceso y soporte cada una con sus distintas etapas todo esto adaptable al software que queremos desarrollar en determinado momento o bajo ciertas circunstancias.

RUP es de forma disciplinada por ende es capaz de asignar tareas y responsabilidades como quien lo hace, cuando y como, este pretende implementar las mejoras prácticas en la ingeniería en software, posee un desarrollo iterativo porque tiene un uso de arquitectura basada en componentes y control de cambios.
BIBLIOGRAFÍA

Lodos, M., Genoveva, E., Gómez-monte, T., & Olimpia, N. (2007). El sistema de calidad del CID, la documentación de software y RUP The IC/D â€™s qua/ ity system, the software documentation and RUP Eugenia Genoveva Muhíz Lodos * y Nimia Olimpia Torres Gómez-Monte.

Lodos, M., Genoveva, E., Gómez-monte, T., & Olimpia, N. (2007). El sistema de calidad del CID, la documentación de software y RUP The IC/D â€™s qua/
ity system, the software documentation and RUP. Eugenia Genoveva Muhiz Lodos
* y Nimia Olímpia Torres Gómez-Monte.

Torres, F. (2009). Integración del PMBOK al RUP para proyectos de Desarrollo de
Software. ... Iberoamericana En Sistemas, Cibernética E Informática Retrieved

Portillo, L. W. (2010). Mejorando las debilidades de RUP para la gestión de proyectos,
7(2), 49–56.

Pérez, O. (2011). Cuatro enfoques metodológicos para el desarrollo de Software RUP –
MSF - XP - SCRUM. Revista Inventum, 0(10), 64–78. Retrieved from
http://biblioteca.uniminuto.edu/ojs/index.php/Inventum/article/view/9/9#

Mohd, H., Robie, M. A. M., Baharom, F., Darus, N. M., Saip, M. A., & Yasin, A.
(2016). Adapting Rational Unified Process (RUP) approach in designing a secure
https://doi.org/10.1063/1.4960906

Mohd, H., Robie, M. A. M., Baharom, F., Darus, N. M., Saip, M. A., & Yasin, A.
(2016). Adapting Rational Unified Process (RUP) approach in designing a secure
https://doi.org/10.1063/1.4960906

scopusresults (1). (n.d.).

Pérez, O. (2011). Cuatro enfoques metodológicos para el desarrollo de Software RUP –
MSF - XP - SCRUM. Revista Inventum, 0(10), 64–78. Retrieved from
http://biblioteca.uniminuto.edu/ojs/index.php/Inventum/article/view/9/9#

Herramienta para la gestión de proyectos utilizando la metodología RUP.

29